. Jorge A. Carrillo M. Email: jorgecarrillom2@gmail.com

Compartir

viernes, 28 de junio de 2019

Descomposición de una expresión algebraica en cuatro factores.

.      

Descomposición de una expresión algebraica en cuatro factores.
Procedimiento:
1) Se descompone la expresión algebraica en los factores que se necesiten, utilizando cualquiera de los 10 casos de Factorización, según el o los que sean necesarios.
_____________________________________________________
Ejemplos:
a) Descomponer en cuatro factores   2x⁴-32
> Buscando el factor común de 2x⁴   y   32, que es 2
> Se descompone la expresión en 2 factores:
2x⁴-32 = 2(x⁴-16)
> Se descompone x⁴-16 en dos factores:
x⁴-16 = (x²+4)(x²-4)
> Se descompone x²-4 en dos factores:
x²-4 = (x+2)(x-2)
--> 2x⁴-32 =  2(x²+4)(x+2)(x-2)   Solución

b) Descomponer en cuatro factores  a⁶-b⁶
> Descomponer la expresión como diferencia de cuadrados:
a⁶-b⁶ = (a³+b³)(a³-b³)
> Descomponiendo cada uno de los factores anteriores
como suma y como diferencia de cubos perfectos:
(a³+b³)(a³-b³) =  (a+b)(a²-ab+b²)(a-b)(a²+ab+b²)
--> a⁶-b⁶ =  (a+b)(a²-ab+b²)(a-b)(a²+ab+b²)  Solución.
___________________________________________________
Ejercicio 108.
3) Descomponer en cuatro factores  x⁴-41x²+400
> Descomponiendo la expresión como Caso VI
x⁴-41x²+400 = (x²-25)(x²-16)
> Descomponiendo  x²-25  y  x²-16  como caso IV
x²-25 = (x+5)(x-5)
x²-16 = (x+4)(x-4)
--> la descomposición quedaría así:
x⁴-41x²+400 = (x+5)(x-5)(x+4)(x-4)  Solución.
__________________________________________________
10) Descomponer en cuatro factores  12ax⁴+33ax²-9a
> Descomponiendo la expresión en su factor común:
El factor común de 12ax⁴+33ax²-9a  es  3a
--> = 3a(4x⁴+11x²-3)
> Descomponiendo 4x⁴+11x²-3 como Caso  VII
3a(4x⁴+11x²-3) = 3a(x²+3)(4x²-1)
Descomponiendo 4x²-1  como Caso IV:
3a(x²+3)(4x²-1) = 3a(x²+3)(2x+1)(2x-1)
-->  12ax⁴+33ax²-9ª =  3a(x²+3)(2x+1)(2x-1)  Solución.
__________________________________________________
12) Descomponer en cuatro factores  x⁶-7x³-8
> Descomponiendo la expresión como Caso VI:
x⁶-7x³-8 =  (x³-8)(x³+1)
> Descomponiendo  x³-8   y   x³+1 como Caso IX:
x³-8 = (x-2)(x²-2x+4)
x³+1 = (x+1)(x²-2x+1)
--> La descomposición quedaría así:
x⁶-7x³-8 =  (x-2)(x²-2x+4)(x+1)(x²-2x+1)  Solución.
__________________________________________________

No hay comentarios.:

Publicar un comentario

Sugiere, solicita o comenta. Es muy importante.