Blog creado por el Prof. Jorge A. Carrillo (1951-2025). Sus comentarios ya no podrán ser respondidos, pero pueden seguir usando el sitio. Bendiciones.

Compartir

Mostrando las entradas con la etiqueta Ejercicio 119. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Ejercicio 119. Mostrar todas las entradas

lunes, 8 de julio de 2019

Simplificación de fracciones cuyos términos sean polinomios.

.              

Regla:
Se descomponen en factores todos los polinomios, utilizando el Caso correspondiente de factorización o de Productos Notables.   Luego se suprimen los factores comunes del numerador y del denominador, dividiendo tanto el numerador como el denominador por un mismo factor común; de manera de dejarlos en su mínima expresión.
________________________________________

Ejemplo A)  simplificar   2a² /4a²-4ab
--> Factorizando el denominador del Polinomio:
(Se utiliza el Caso I de Factorización en el denominador)
2a² / 4a²-4ab  = 2a² / 4a(a -b)  = 1∗a /2∗1∗(a -b)  =  a / 2(a -b)   <--  Solución.
Se dividió   2/4  entre 2/2  =  1/2
Se dividió   a² /a  entre  a /a  =  a/1
El factor (a-b), que no tiene común, solo se copia.
________________________________________
Ejemplo B)  Simplificar   4x²y³ / 24x³y³-36x³y⁴
--> Factorizando el denominador del Polinomio:
(Se utiliza el Caso I de factorización)
4x²y³ / 24x³y³-36x³y⁴  = 4x²y³/12x³y³(2 -3y) = 1∗1∗1 / 3∗ x∗1∗ (2 -3y) = 1 /3x(2 -3y) <-- Solución.
Se dividió   4/12  entre 4/4  =  1/3
Se dividió   x²/x³   entre   x²/x²  =  1 /x
Se dividió   y³/y³   entre  y³/y³  =  1/1  = 1
El factor (2 -3y), que no tiene común solo se copia.
________________________________________
Ejemplo C)  Simplificar   x² -5x +6 / 2ax -6a
-->  Factorizando el Polinomio
(El numerador (Caso VI) y el denominador (Caso I)  De Factorización.
x²-5x+6 / 2ax -6a  =  (x -3)(x -2) / 2a(x -3)  =  1∗x-2 / 1∗2a = x-2/2a  <-- Solución.
Se dividió  x -3 /x -3  entre   x -3 /x-3  =  1/1  = 1
Los factores no comunes  ( x -2)  y  "2a" , solo se copian.
_________________________________________
Ejemplo D)  Simplificar    8a^3+27 / 4a^2+12a+9
-->  Factorizando el Polinomio.
El numerador (Producto Notable: Cubo de un Binomio)
y el denominador (Producto Notable: Cuadrado de la Suma de dos Cantidades)
8a³+27 / 4a²+12a+9  =  (2a +3)(4a² -6a +9) / (2a +3)²  =  (2a +3)(4a²-6a+9) / (2a +3)(2a +3) =

4a²-6a+9 / 2a +3  <--  Solución.
Se dividió  2a +3 / 2a +3  entre  2a+3 / 2a+3  =  1/1  =  1
Los factores no comunes (4a²-6a+9)  y  (2a+3), solo se copian.
________________________________________

Ejercicio 119.
1) Simplificar  3ab / 2a²x +2a³
--> Factorizando el polinomio en el denominador: (Caso I de Factorización)
3ab / 2a²x+2a³  =  3ab / 2a²(x+a) = 3(1)(b) / 2(a)(x+a) = 3b / 2a(x+a) <--  Solución.
Se dividió   a/a² entre a/a  =  1/a
Los factores no comunes [ 3 , b ,  2 , (x+a) ], solo se copian.
________________________________________

2) Simplificar   xy / 3x²y -3xy²
--> Factorizando el polinomio:  (en el denominador  Caso I de Factorización)
xy /3x²y -3xy² = xy/3xy(x -y) = (x)(y)/3(x)(y)(x -y) = (1)(1) / (3)(x -y) = 1 / 3(x -y) <--  Solución.
Se dividió   x/x  entre  x/x  =  1/1
Se dividió   y/y  entre  y/y  =  1/1
Los factores no comunes [ 3 , (x -y) ], solo se copian.
(En este ejercicio como en el numerador el único factor es el "1"  entonces si escribe; en cambio en el denominador como existen otros factores diferentes de "1", no es necesario escribir dicho factor,  porque este no altera el producto)
________________________________________

3) Simplificar   2ax+4bx /3ay+6by
--> Factorizado el polinomio  (Caso I de Factorización )
2ax+4bx /3ay+6by = 2x(a+2b) /3y(a+2b) = (2)(x)(1) / (3)(y)(1) = 2x / 3y <-- Solución.
Se dividió a +2b / a +2b   entre  a +2b /a +2b  =  1 /1
Los factores no comunes ( 2,  x,  3,  y), solo se copian.
________________________________________


4)  Simplificar   x² -2x -3 / x-3
--> Factorizando el numerador  (Caso VI de Factorización)
x² -2x -3 / x -3  =  (x-3)(x +1) / x -3  = 1(x +1) / 1 = x +1  <--  Solución.
Se dividió  x -3 /x -3  entre  x -3/x -3  =  1/1
Los factores no comunes "(x +1)",  solo se copian.
________________________________________

5)  Simplificar   10a²b³c /80(a³ -a²b)
Factorizando  el denominador  (Caso I de Factorización)
10a²b³c / 80(a³ -a²b)  =  10a²b³c / 80a²(a -b)  = (1)(1)(b³)(c) / (8)(1)(a -b)

= b³c / 8(a -b)  <--  Solución.
Se dividió  10/80  entre  10/10  =   1/8
Se dividió  a² /a²  entre  a²/a²  =  1/1
Los factores comunes [ b³,  c,  (a -b)], solo se copian.
________________________________________

6) Simplificar   x² -4 / 5ax +10a
Factorizando el numerador (Caso IV) y el denominador (Caso I), ambos de Factorización.
x² -4 / 5ax +10a  =  (x -2)(x +2) / 5a(x +2) = (1)(x -2) / (1)(5)(a) =  x -2 / 5a  <--  Solución.
Se dividió  x +2/x +2  entre  x +2 / x +2  =  1/1
Los factores no comunes [ (x -2),  5,  a ]
________________________________________

10) Simplificar 3x²y+15xy/x²-25

Factorizando el numerador (Caso I) y el denominador (Caso IV) de factorización.

3x²y+15xy/x²-25 = 
= 3xy(x+5)/(x-5)(x+5)

Dividiendo x+5/x+5 = 1/1 
Los factores no comunes 3xy ,  x-5 , solo se copian.

=3xy/x-5   Solución.
________________________________________

11) Simplificar a²-4ab+4b²/a³-8b³
Factorizando el numerador (Caso VI) y el denominador (Caso IX)
a²-4ab+4b²/a³-8b³ = (a-2b)(a-2b)/(a-2b)(a²+2ab+4b²)
es = a-2b/a²+2ab+4b²<-- Solución.
Nota: Al simplificar la fracción se eliminó (a-2b) del numerador y (a-2b) del denominador.
________________________________________

12)  Simplificar  x³+4x²-21x/x³-9x

Factorizando numerador y denominador como Caso I. 
= x(x²+4x-21)/x(x² - 9)

Factorizando el numerador como Caso I , y el denominador como Caso IV.
= x(x+7)(x-3)/x(x+3)(x-3)
= x+7/x+3   Solución.
________________________________________

13) Simplificar  6x²+5x-6/15x²-7x-2

Factorizando el numerador y el denominador como Caso VII.

= [  6(6x²+5x-6)] ÷  6  = [(6x)²+5x(6x)-36]÷  6
   [15(15x²-7x-2)]÷15     [(15x)²-7(15x)-30]÷15

= [(6x+9) / 3][(6x-4)  / 2]     = (2x+3)(3x-2)   =  2x+3     Solución.
    [(15x-10)/5][(15x+3)/3]      (3x-2)(5x+1)       5x+1
________________________________________

14) Simplificar   a³+1 /a⁴-a³+a-1
Factorizando el denominador como Caso II.

= a³+1 /(a⁴-a³)+(a-1)

= a³+1/a³(a-1)+1(a-1)
= a³+1/(a-1)(a³+1)

Simplificando la fracción para eliminar a³+1 del numerador y del denominador.
= 1/a-1     Solución.
________________________________________