Se
reducen a la forma de una cantidad real (a) multiplicada por √-1 y
luego se reducen como radicales semejantes.
________________________________________________
Ejemplos:a) Simplificar √-4 + √-9
>
Convirtiendo a la forma a√-1
√-4
= √[(4)(-1)] = (√2²)(√-1)
=
2√-1√-9 = √[(9)(-1)] = (√3²)(√-1) = 3√-1
> Reduciendo como radicales semejantes:
2√-1 + 3√-1
=
(2+3)√-1
=
5√-1
= 5i Solución.
b)
Simplificar 2√-36 - √-25 + √-12
>
Convirtiendo a la forma a√-1:
2√-36
= 2[(√36)(-1)]
=
2(√6²)(√-1)
=
2(6)√-1
= 12√-1
√-25
=
[(√25)(-1)]
=
(√5²)(√-1)
=
5(√-1)
= 5√-1√-12 = [(√12)(-1)] = [√2²(3)](√-1) = 2(√3)(√-1)
>
Reduciendo los radicales semejantes:
12√-1
– 5√-1
+ 2(√3)(√-1)
=
(12-5+2√3)(√-1)
=
(7+2√3)(√-1)= (7+2√3)i Solución.
_________________________________________________
Ejercicio
254
Simplificar:
1)
√-4 + √-16
√-4
=
√[(4)(-1)]
= (√2²)(√-1)
= 2(√-1)
√-16 = √[(16)(-1)] = (√4²)(√-1) = 4(√-1)
→ 2(√-1) + 4(√-1)
= (2+4)√-1
= 6√-1
= 6i Solución.
√-25 = √[(25)(-1)] = (√5²)(√-1) = 5(√-1)
√-81 = √[(81)(-1)] = (√9²)(√-1) = 9(√-1)
√-49 = √[(49)(-1)] = (√7²)(√-1) = 7(√-1)
→ 5(√-1) + 9(√-1) – 7(√-1)
= (5+9-7)√-1
= 7√-1
= 7i Solución.
2√-9 = 2√[(9)(-1)] = 2√(3²)(√-1) = 2(3)√-1 = 6√-1
3√-100 = 3√[(100)(-1)] = 3√(10²)(√-1) = 3(10)√-1 = 30√-1
→ 6√-1 + 30√-1
= (6+30)√-1
= 36√-1
= 36i Solución.
√-18 = √[(18)(-1)] = (√3²)(2)(√-1) = 3(√2)(√-1)
√-8 = √[(8)(-1)] = (√2²)(2)(√-1) = 2(√2)(√-1)
2√-50 = 2√[(50)(-1)] = 2(√5²)(2)(√-1) = 2(5)(√2)(√-1)
→ 3(√2)(√-1) + 2(√2)(√-1) + 10(√2)(√-1)
= (3+2+10)√2√-1
= 15√2√-1
= 10√2i Solución.
___________________________________________________
No hay comentarios.:
Publicar un comentario
Sugiere, solicita o comenta. Es muy importante.