Fórmula Particular: x = -m/2 ±√(m²/4
-n)
___________________________________________
Ejemplo:
Resolver la ecuación 3x²-2x(x-4) = x-12
Ejemplo:
Resolver la ecuación 3x²-2x(x-4) = x-12
>
Simplificando la ecuación a la forma x²+mx+n
3x²-2x²+8x = x-12
3x²-2x²+8x = x-12
>
Transponiendo términos:
3x²-2x²+8x-x+12 = 0
3x²-2x²+8x-x+12 = 0
> Reduciendo
términos:
x²+7x+12 = 0 <-- donde m=7 y n = 12
x²+7x+12 = 0 <-- donde m=7 y n = 12
> Aplicando la
fórmula:
x = -m/2 ±√(m²/4 -n)
x = -7/2 ±√(7²/4 -12)
x = -7/2 ±√(49/4 -12)
x = -7/2 ±√(1/4)
x = -7/2 ± 1/2
x₁ = -7/2+1/2 = -6/2 = -3
x₂ = -7/2-1/2 = -8/2 =-4
_____________________________________________
Ejercicio 267.
Resolver las ecuaciones por la fórmula particular:
x = -m/2 ±√(m²/4 -n)
x = -7/2 ±√(7²/4 -12)
x = -7/2 ±√(49/4 -12)
x = -7/2 ±√(1/4)
x = -7/2 ± 1/2
x₁ = -7/2+1/2 = -6/2 = -3
x₂ = -7/2-1/2 = -8/2 =-4
_____________________________________________
Ejercicio 267.
Resolver las ecuaciones por la fórmula particular:
1) x²-3x+2
= 0
> Aplicando la
fórmula:
x = -m/2 ±√[m²/4 -n]
x = -(-3)/2 ±√[(-3)²/4 -2)
x = 3/2 ±√[9/4 -2]
x = 3/2 ±√(1/4)
x = 3/2 ± 1/2
x₁ = 3/2+1/2 = 4/2 = 2
x₂ = 3/2-1/2 = 2/2 = 1
______________________________________________
3) x²-19x = -88
x = -m/2 ±√[m²/4 -n]
x = -(-3)/2 ±√[(-3)²/4 -2)
x = 3/2 ±√[9/4 -2]
x = 3/2 ±√(1/4)
x = 3/2 ± 1/2
x₁ = 3/2+1/2 = 4/2 = 2
x₂ = 3/2-1/2 = 2/2 = 1
______________________________________________
3) x²-19x = -88
> Convirtiendo
la ecuación:
x²-19x+88 = 0
x²-19x+88 = 0
> Aplicando la
fórmula:
x = -m/2 ±√[m²/4 -n]
x = -(-19)/2 ±√[(-19)²/4 -88 ]
x = 19/2 ±√[361/4 -88]
x = 19/2 ±√(9/4)
x = 19/2 ±3/2
x₁ = 19/2+3/2 =22/2 = 11
x₂ = 19/2-3/2 =16/2 = 8
___________________________________________
5) 5x(x-1)-2(2x²-7x) = -8
x = -m/2 ±√[m²/4 -n]
x = -(-19)/2 ±√[(-19)²/4 -88 ]
x = 19/2 ±√[361/4 -88]
x = 19/2 ±√(9/4)
x = 19/2 ±3/2
x₁ = 19/2+3/2 =22/2 = 11
x₂ = 19/2-3/2 =16/2 = 8
___________________________________________
5) 5x(x-1)-2(2x²-7x) = -8
> Efectuando
operaciones:
5x²-5x-4x²+14x = -8
5x²-5x-4x²+14x = -8
> Reduciendo
términos:
x²+9x+8 = 0
x²+9x+8 = 0
> Aplicando la
fórmula:
x = -(9)/2 ±√[(9)²/4 -8]
x = -9/2 ±√[81/4 -8]
x = -9/2 ±√(49/4)
x = -9/2 ±7/2
x₁ = -9/2+7/2 = -2/ 2= -1
x₂ = -9/2-7/2 = -16/2 = -8
___________________________________________
9) 2x²-(x-2)(x+5) = 7(x+3)
x = -(9)/2 ±√[(9)²/4 -8]
x = -9/2 ±√[81/4 -8]
x = -9/2 ±√(49/4)
x = -9/2 ±7/2
x₁ = -9/2+7/2 = -2/ 2= -1
x₂ = -9/2-7/2 = -16/2 = -8
___________________________________________
9) 2x²-(x-2)(x+5) = 7(x+3)
> Efectuando
operaciones:
2x²-(x²+3x-10) = 7x+21
2x²-x²-3x+10 = 7x+21
2x²-(x²+3x-10) = 7x+21
2x²-x²-3x+10 = 7x+21
>
Transponiendo y reduciendo términos:
2x²-x²-3x-7x+10-21 = 0
x²-10x-11 = 0
2x²-x²-3x-7x+10-21 = 0
x²-10x-11 = 0
> Aplicando la
fórmula:
x = -(-10)/2 ±√[(10)²/4 -(-11)]
x = 5 ±√[100/4 +11]
x = 5±√36
x = 5±6
x₁ = 5+6 = 11
x₂ = 5-6 = -1
___________________________________________
x = -(-10)/2 ±√[(10)²/4 -(-11)]
x = 5 ±√[100/4 +11]
x = 5±√36
x = 5±6
x₁ = 5+6 = 11
x₂ = 5-6 = -1
___________________________________________
No hay comentarios.:
Publicar un comentario
Sugiere, solicita o comenta. Es muy importante.