. 7x² -12x +64 = 0
La Fórmula
General es utilizada generalmente en Ecuaciones de la forma
ax²±bx±c = 0.
x = [-b±√(b²-4ac)] / 2a
x = [-b±√(b²-4ac)] / 2a
__________________________________________
Ejemplos:
E1)
Resolver la ecuación 3x²-7x+2 = 0
> Se
sustituyen los valores de “a”, “b” y “c” en la fórmula:
x = [-b±√(b²-4ac)] / 2a
x = [-(-7)±√(-7)²-4(3)(2)]/2(3)
= [7 ±√49-24]/6
= [7 ±√25]/6
= (7± 5)/6
--> x₁ = (7+
5)/6 = 12/6 = 2
--> x₂ = (7-
5)/6 = 2/6 = 1/3
> Para
comprobar las raíces encontradas se sustituyen los valores en la
ecuación original:
> Sustituyendo “x” por el valor 2
3x²-7x+2 = 0
3(2)²-7(2)+2 = 0
12-14+2 = 0
0 = 0
3(2)²-7(2)+2 = 0
12-14+2 = 0
0 = 0
> Sustituyendo “x” por el valor 1/3
3(1/3)²-7(1/3)+2
= 0
1/3 -7/3 +2 = 0
0 = 0
__________________________________________
0 = 0
__________________________________________
E2) Resolver la ecuación 6x -x² -9 = 0
> Ordenando la
ecuación:
-x²+6x-9 = 0
-x²+6x-9 = 0
> Cambiando
signos:
x²-6x+9 = 0
x²-6x+9 = 0
> Aplicando la
fórmula general (tomando en cuenta que “a”, el coeficiente de
x², es 1)
x = [-b ±√b²-4ac]/2a
x = [-(-6) ±√(-6)²-4(1)(9]/2(1)
x = [6 ±√36-36]/2
x = (6 ±√0)/2
= 6/2 = 3
En este tipo caso, “x” solo tiene un valor “3”, para las 2 raíces
resultantes,
porque 6+0/2 = 6/2 = 3 y 6-0/2 = 6/2 = 3
porque 6+0/2 = 6/2 = 3 y 6-0/2 = 6/2 = 3
por lo tanto x₁ = 3 y x₂ = 3
___________________________________________
Ejercicio 265
Resolver las siguientes ecuaciones por la fórmula general:
1)
3x²-5x+2= 0
> Aplicando la
fórmula general:
x=[-(-5)±√(-5)²-4(3)(2)]/2(3)
= [5 ±√25-24]/6
= [5 ±√1]/6 =
(5±1)/6
--> x₁ = (5+ 1)/6 = 6/6 = 1
--> x₂ = (5- 1)/6 = 4/6 = 2/3
___________________________________________
--> x₁ = (5+ 1)/6 = 6/6 = 1
--> x₂ = (5- 1)/6 = 4/6 = 2/3
___________________________________________
2) 4x²+3x-22 = 0
> Aplicando la
fórmula general:
x = [-(3) ±√(3)²-4(4)(-22)]/2(4)
x = [-3 ±√9+352]/8
x = [-3 ±√361]/8
x = (-3 ±19)/8
--> x₁
= (-3+ 19)/8 =16/8 = 2
--> x₂ = (-3- 19)/8 = (-22)/8 = -11/4
___________________________________________
--> x₂ = (-3- 19)/8 = (-22)/8 = -11/4
___________________________________________
3) x²+11x = -24
>
Ordenando:
x²+11x+24 = 0
x²+11x+24 = 0
> Aplicando la
fórmula general:
x =[-(11)±√(11)²-4(1)(24)]/2(1)
x =
[-11±√(121-96)]/2
x = [-11±√25]/2
x = (-11±5)/2
--> x₁ = (-11+ 5)/2 = (-6)/2 = -3
--> x₂ = (-11- 5)/2 = (-16)/2 = -8
___________________________________________
5) 12x-4-9x² = 0
>
Ordenando:
-9x²+12x-4 = 0
-9x²+12x-4 = 0
> Cambiando
los signos:
9x²-12x+4 = 0
9x²-12x+4 = 0
> Aplicando la
fórmula general:
x = [-(-12)±√(-12)²-4(9)(4)]/2(9)
x =
[12 ±√(144-144)]/18
x = [12 ±√0/18
x = (12 ±0)/18
-->
x₁ = (12+0)/18 =12/18 = 2/3
--> x₂ = (12- 0)/18 =12/18 = 2/3
____________________________________________
--> x₂ = (12- 0)/18 =12/18 = 2/3
____________________________________________
No hay comentarios.:
Publicar un comentario
Sugiere, solicita o comenta. Es muy importante.