. Jorge A. Carrillo M. Email: jorgecarrillom2@gmail.com

Compartir

lunes, 2 de diciembre de 2019

Suma de los términos de una Progresión Geométrica.

.Fórmula:  S = ur-a /r-1

Procedimiento:
1) Se realizan las operaciones que sean necesarias para simplificar las cantidades de los términos.
2) Se encuentran los elementos que falten para aplicar la fórmula de la suma.
3) Se aplica la fórmula de la Suma.
____________________________________________
Fórmula:  S = ur-a /r-1
____________________________________________

Ejemplos:

a) Hallar la suma de los 6 primeros términos de 4:2:1….
> Elementos:  a = 4  ;  n = 6  ;  r =2÷4= ½  ;  u = ?
> Encontrando “u”
u = arⁿ⁻¹
u = 4(½)⁶⁻¹
u = 4(½)⁵
u = 4(¹/₃₂)
u =¹/₈
> Aplicando la fórmula para la suma:
S = ur-a /r-1
S = (¹/₈)(½)-4 /½-1
S = (¹/₁₆)-4 /-½
S = (-⁶³/₁₆)/(-½)
S = ⁶³/₈ = 7 ⁷/₈  Solución.

b) Hallar la suma de los 8 primeros términos de 9:-3:1….
> Elementos: a = 9  ;  n = 8  ;  r=-3÷9=-⅓  ;  u = ?
> Encontrando “u”
u = arⁿ⁻¹
u = 9(-⅓)⁸⁻¹
u = 9(-⅓)⁷
u = 9(-¹/₂₁₈₇)
u = -¹/₂₄₃
> Aplicando la fórmula para la suma:
S = ur-a /r-1
S = (-¹/₂₄₃)(-⅓)-9 /-⅓-1
S = (¹/₇₂₉)-9 /(-⁴/₃)
S = (-⁶⁵⁶⁰/₇₂₉)/(-⁴/₃)
S = 6 ¹⁸²/₂₄₃   Solución.
_____________________________________________

Ejercicio 293.

1) Hallar la suma de los 5 primeros términos de 6:3:1½….
> Elementos:  a = 6  ;  n = 5  ;  r=3÷6= ½  ;  u =?
>Encontrando “u”
u = arⁿ⁻¹
u = 6(½)⁵⁻¹
u = 6(½)⁴
u = 6(¹/₁₆) = ⅜
> Aplicando la fórmula para la suma:
S = ur-a /r-1
S = (⅜)(½)-6 / ½ -1
S = (³/₁₆)-6 / ½ -1
S = (-⁹³/₁₆)/(-½)
S = 11 ⁵/₈  Solución.
____________________________________________

2) Hallar la suma de los 6 primeros términos de 4:-8:16….
> Elementos:  a = 4  ;  n = 6  r=-8÷4= -2  ;  u =?
> Encontrando “u”:
u = arⁿ⁻¹
u = 4(-2)⁶⁻¹
u = 4(-2)⁵
u = 4(-32)
u = -128
> Aplicando la fórmula de  suma:
S = ur-a /r-1
S = (-128)(-2)-4 /(-2-1)
S = (256-4)/-3
S = 252/-3
S = -84  Solución.
____________________________________________

3) Hallar los 7 primeros términos de 12:4:1⅓….
> Elementos:  a=12  ;  n=7  ;  r=4÷12= ⅓  ; u=?
> Encontrando “u”:
u = arⁿ⁻¹
u = 12(⅓)⁷⁻¹
u = 12(⅓)⁶
u = (12)(¹/₇₂₉)
u = ⁴/₂₄₃
> Aplicando la fórmula de suma:
S = ur-a /r-1
S = (⁴/₂₄₃)(⅓)-12 /⅓-1
S = ⁴/₇₂₉ -12 /-²/₃
S = (-⁸⁷⁴⁴/₇₂₉)/-²/₃
S = 17 ²⁴¹/₂₄₃  Solución.
_____________________________________________

4) Hallar los 10 primeros términos de ¼:½:1….
> Elementos:  a= ¼ ;  n=10  ;  r=½÷¼=2  ;  u=?
u = arⁿ⁻¹
u = ¼ (2)¹⁰⁻¹
u = ¼ (2)⁹
u = (¼)(512)
u = 128
> Aplicando la fórmula de suma:
S = ur-a /r-1
S = (128)(2)-¼ /2-1
S = 256-¼ /1
S = (¹⁰²³/₄)/1
S = 255 ³/₄  Solución.
_____________________________________________

No hay comentarios.:

Publicar un comentario

Sugiere, solicita o comenta. Es muy importante.