Aquí se aplican las diferentes fórmulas para logaritmo de un producto, de un cociente, de una potencia y de una raíz; de acuerdo con la expresión aritmética dada.
___________________________________________________
Ejemplos:
a) Hallar el valor de (3284*0.09132) /715.84
> Aplicando las fórmulas correspondientes:
Log [(3284*0.09132)/715.84] =
= Log (3284*0.09132) + Colog 715.84
= (3.516403 + ⁻2.960566) + 3.145184
= 2.476969 + ⁻3.145184
= ⁻1.622153
> Antilog del resultado es
= 0.418941 Solución.
b) Hallar el valor de 100.39*0.03196 / 7.14*0.093
> Aplicando las fórmulas correspondientes:
Log [(100.39*0.03196)/(7.14*0.093)]=
= (Log 100.39 + Log 0.03196) – (Log 7.14 + Log 0.093)
= (2.001690 + ⁻2.504607) – (0.853698 + ⁻2.968483)
= 0.506297 + Colog ⁻1.822181
= 0.506297 + 0.177819
= 0.684116
= Antilog 0.684116
= 4.831878 Solución.
c) Hallar por logaritmos el valor de 3^⅖ * 5^⅔
> Aplicando las fórmulas correspondientes:
Log (3^⅖ * 5^⅔) =
= ⅖(Log 3) + ⅔(Log 5)
= ⅖(0.477121) + ⅔(0.698970)
= 0.190848 + 0.46598
= 0.656828
= Antilog 0.656828
= 4.5376 Solución.
d) Hallar por logaritmos el valor de ³√(32.7*0.006)/(0.14*89.17)
> Aplicando los fórmulas correspondientes:
Log [³√(32.7*0.006)/(0.14*89.17)] =
= Log [(32.7*0.006)/(0.14*89.17)]/3
= [(Log 32.7 + Log 0.006) - (Log 0.14 + Log 89.17)]/3
= [(1.514548 + ⁻3.778151) + Colog (⁻1.146128 + 1.950219)]/3
= [(⁻1.292699) + Colog (1.096347)]/3
= [⁻1.292699) + ⁻2.903653]/3
= ⁻2.196352/3
= ⁻1.398784
Antilog ⁻1.398784
= 0.25048 Solución.
___________________________________________________
Ejercicio 299.
Hallar por logaritmo el valor de las expresiones siguientes:
1) 515*78.19 /6.13
> Aplicando la fórmula para logaritmo de un producto, y de un cociente:
Log (515*78.19 /6.13) =
= (Log 515 + Log 78.19) – (Log 6.13)
= (2.711807 + 1.893151) + Colog 0.787460
= 4.604958 + ⁻1.212540
= 3.817498
Antilog de 3.817498 = 6568.98
= 6569. Solución.
___________________________________________________
11) 2^⅕ * 3^½ * 5^¾
> Aplicando la fórmula para logaritmo de una potencia y de un producto:
Log (2^⅕ * 3^½ * 5^¾) =
= ⅕(Log 2) + ½(Log 3) + ¾(Log 5)
= ⅕(0.301030) + ½(0.477121) + ¾(0.698970)
= 0.060206 + 0.238560 + 0.524227
= 0.822993
Antilog de 0.822993 =
= 6.6526 Solución.
____________________________________________________
16) √(932.5 * 813.6 * 0.005)
> Aplicando la fórmula para logaritmo de un producto y de una raíz:
Log [√(932.5 * 813.6 * 0.005)]
= (Log 932.5 + Log 813.6 + Log 0.005)/2
= (2.969649 + 2.910411 + ⁻3.698970)/2
= 3.57903 /2
= 1.789515
Antilog 1.789515
= 61.591 Solución.
_____________________________________________________
20) ⁵√(56813/22117)
> Aplicando la fórmula para logaritmo de un cociente y de una raíz:
Log ⁵√(56813/22117
= (Log 56813 – Log 22117)/5
= (4.754447 + Colog 4.344726)/5
= (4.754447 + ⁻5.655274)/5
= 0.409721/5
= 0.081944
Antilog 0.081944 =
= 1.20766 Solución.
____________________________________________________
No hay comentarios.:
Publicar un comentario
Sugiere, solicita o comenta. Es muy importante.